Telegram Group & Telegram Channel
🌳 Ветки в ML: как работает Random Forest

Если вы слышали про деревья решений, но не понимаете, зачем из них делают целый лес — вот схема, чтобы всё стало на свои места. Random Forest — это ансамбль из деревьев, который работает лучше, чем каждое по отдельности.

📦 Input: признаки (features)
🔁Output: предсказание (class или значение)

Step 1: Bootstrap-агрегация (bagging)
📦 Берём случайные подмножества данных
📦 Тренируем дерево на каждом из них
📦 Повторяем N раз

Step 2: Построение деревьев
📦 На каждой вершине выбираем случайный поднабор признаков
📦 Выбираем лучший сплит
📦 Растим дерево до конца (без обрезки)
📦 Повторяем для всех подмножеств

Step 3: Коллективное решение
📦 Все деревья делают предсказания
📦 Классификация: голосуем большинством
📦 Регрессия: считаем среднее

👉 Что важно:
— Каждое дерево «слепо» и нестабильно, но лес — устойчив
— Метод борется с переобучением
— Работает хорошо даже без тюнинга
— Обожают за explainability (важность признаков и out-of-the-box визуализацию)

🔵 Чтобы знать о машинном обучении все, забирайте наш курс «Базовые модели ML и приложения»

Proglib Academy
#буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/proglib_academy/2772
Create:
Last Update:

🌳 Ветки в ML: как работает Random Forest

Если вы слышали про деревья решений, но не понимаете, зачем из них делают целый лес — вот схема, чтобы всё стало на свои места. Random Forest — это ансамбль из деревьев, который работает лучше, чем каждое по отдельности.

📦 Input: признаки (features)
🔁Output: предсказание (class или значение)

Step 1: Bootstrap-агрегация (bagging)
📦 Берём случайные подмножества данных
📦 Тренируем дерево на каждом из них
📦 Повторяем N раз

Step 2: Построение деревьев
📦 На каждой вершине выбираем случайный поднабор признаков
📦 Выбираем лучший сплит
📦 Растим дерево до конца (без обрезки)
📦 Повторяем для всех подмножеств

Step 3: Коллективное решение
📦 Все деревья делают предсказания
📦 Классификация: голосуем большинством
📦 Регрессия: считаем среднее

👉 Что важно:
— Каждое дерево «слепо» и нестабильно, но лес — устойчив
— Метод борется с переобучением
— Работает хорошо даже без тюнинга
— Обожают за explainability (важность признаков и out-of-the-box визуализацию)

🔵 Чтобы знать о машинном обучении все, забирайте наш курс «Базовые модели ML и приложения»

Proglib Academy
#буст

BY Proglib.academy | IT-курсы


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/proglib_academy/2772

View MORE
Open in Telegram


Proglib academy | IT курсы Telegram | DID YOU KNOW?

Date: |

For some time, Mr. Durov and a few dozen staffers had no fixed headquarters, but rather traveled the world, setting up shop in one city after another, he told the Journal in 2016. The company now has its operational base in Dubai, though it says it doesn’t keep servers there.Mr. Durov maintains a yearslong friendship from his VK days with actor and tech investor Jared Leto, with whom he shares an ascetic lifestyle that eschews meat and alcohol.

Proglib academy | IT курсы from hk


Telegram Proglib.academy | IT-курсы
FROM USA